The Action Functional in Non-Commutative Geometry
نویسنده
چکیده
We establish the equality between the restriction of the Adler-ManinWodzicki residue or non-commutative residue to pseudodifferential operators of order n on an n-dimensional compact manifold M, with the trace which J. Dixmier constructed on the Macaev ideal. We then use the latter trace to recover the Yang Mills interaction in the context of non-commutative differential geometry.
منابع مشابه
Non-commutative Symplectic Geometry, Quiver Varieties, and Operads
Quiver varieties have recently appeared in various different areas of Mathematics such as representation theory of Kac-Moody algebras and quantum groups, instantons on 4-manifolds, and resolutions Kleinian singularities. In this paper, we show that many important affine quiver varieties, e.g., the Calogero-Moser space, can be imbedded as coadjoint orbits in the dual of an appropriate infinite d...
متن کامل0 Non - commutative Symplectic Geometry , Quiver varieties
Quiver varieties have recently appeared in various different areas of Mathematics such as representation theory of Kac-Moody algebras and quantum groups, instantons on 4-manifolds, and resolutions Kleinian singularities. In this paper, we show that many important affine quiver varieties, e.g., the Calogero-Moser space, can be imbedded as coadjoint orbits in the dual of an appropriate infinite d...
متن کاملGravity coupled with matter and the foundation of non commutative geometry
We rst exhibit in the commutative case the simple algebraic relations between the algebra of functions on a manifold and its in nitesimal length element ds. Its unitary representations correspond to Riemannian metrics and Spin structure while ds is the Dirac propagator ds = | = D 1 where D is the Dirac operator. We extend these simple relations to the non commutative case using Tomita's involut...
متن کاملSupersymmetric Quantum Theory and Non-Commutative Geometry
Classical differential geometry can be encoded in spectral data, such as Connes’ spectral triples, involving supersymmetry algebras. In this paper, we formulate non-commutative geometry in terms of supersymmetric spectral data. This leads to generalizations of Connes’ non-commutative spin geometry encompassing noncommutative Riemannian, symplectic, complex-Hermitian and (Hyper-) Kähler geometry...
متن کاملHermitian metric on quantum spheres
The paper deal with non-commutative geometry. The notion of quantumspheres was introduced by podles. Here we define the quantum hermitianmetric on the quantum spaces and find it for the quantum spheres.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005